

Reg. No.:....

Name:

Sixth Semester B.Sc. Degree (C.B.C.S.S. – O.B.E. – Regular/ Supplementary/Improvement) Examination, April 2025 (2019 to 2022 Admissions) CORE COURSE IN MATHEMATICS 6B10 MAT : Real Analysis – II

Time: 3 Hours Max. Marks: 48

PART - A

Answer any four questions. Each question carries one mark. (4×1=4)

- 1. Give an example of a Lipschitz Function.
- 2. Define Riemann integral of a function $f : [a, b] \to \mathbb{R}$.
- 3. State Additivity Theorem.
- 4. Define Beta function.
- 5. Find $\lim_{n\to\infty} \frac{x}{x+n}$ for all $x \in [0, 1]$.

PART - B

Answer any eight questions. Each question carries two marks.

 $(8 \times 2 = 16)$

- 6. Define step function on [a, b]. Give an example of a step function on [0, 2].
- 7. Check whether $f(x) = \sin x$ is Lipschitz on \mathbb{R} . Justify your answer.
- 8. Let $f(x) = x^3$ for $x \in [0, 4]$, calculate the Riemann sum with respect to the partition P = (0, 1, 2, 4), take tags at the left end point of the subintervals.
- 9. Show that every constant function on [a, b] is in $\mathcal{R}[a, b]$.

K25U 0158

-2-

- 10. Let $f \in R[a, b]$, and if $[c, d] \subseteq [a, b]$, show that the restriction of f to [c, d] is in R[c,d].
- 11. Show that $\int_0^1 \frac{1}{1-x} dx$ diverges.
- 12. Show that $\Gamma n = (n-1) \Gamma(n-1)$.
- 13. Compute $\Gamma(-3/2)$.
- 14. Let $f_n: \mathbb{R} \to \mathbb{R}$ be defined by $f_n(x) = \frac{\sin nx}{n}$. Find the pointwise limit of the sequence of functions (f_n) .
- 15. Define a metric d on a set S.
- 16. State Dini's theorem.

Answer any four questions. Each question carries four marks.

 $(4 \times 4 = 16)$

- 17. Define uniformly continuous function. Show that $\sin\left(\frac{1}{x}\right)$ is not uniformly continuous on (0, 1).
- 18. Show that every continuous function on [a, b] is Riemann integrable.
- 19. Let f, $g \in R[a, b]$, if $f(x) \le g(x)$ for all $x \in [a, b]$ then show that $\int_a^b f \le \int_a^b g$.
- 20. Evaluate $\int_0^3 \frac{dx}{(x-1)^{2/3}}$.
- 21. Show that $\Gamma n\Gamma(1-n) = \frac{\pi}{\sin n\pi}$.
- 22. Evaluate $\int_0^{\pi/2} (\sin x)^{8/3} (\sec x)^{1/2} dx$.
- 23. Let (f_n) be a sequence of continuous functions on a set $A \subseteq \mathbb{R}$ and suppose that (f_n) converges uniformly on A to a function $f: A \to \mathbb{R}$. Show that f is continuous on A.

PART - D

Answer any two questions. Each question carries six marks.

 $(2 \times 6 = 12)$

- 24. a) Show that a function f is uniformly continuous on the interval (a, b) if and only if it can be defined at the endpoints a and b such that the extended function is continuous on [a, b].
 - b) Show that $f(x) = \frac{e^x 1}{x}$ is uniformly continuous on (0,1).
- 25. State and prove fundamental theorem of calculus (Second form).
- 26. a) Show that $\int_{1}^{\infty} \frac{1}{x^{p}} dx = \begin{cases} \frac{1}{p-1}, & p > 1 \\ \infty, & p \le 1 \end{cases}$
 - b) Investigate the convergence of $\int_1^\infty \frac{1-e^{-x}}{x} dx$.
- 27. Let (f_n) be a sequence of functions in $\mathcal{R}[a,b]$ and suppose that (f_n) converges uniformly on [a,b] to f. Show that $f \in \mathcal{R}[a,b]$ and $\int_a^b f = \lim_{n \to \infty} \int_a^b f_n$.

